Towards the Large-Eddy Simulation of a full engine: Integration of a 360 azimuthal degrees fan, compressor and combustion chamber. Part II: Comparison against stand-alone simulations
Type
Best practice
Description
Unsteady simulations of various components of a gas-turbine engine are often carried out independently and only share averaged quantities at the component interfaces. In order to study the impact and interactions between components, this work compares results from sectoral stand-alone simulations of a fan, compressor and annular combustion chamber of the DGEN-380 demonstrator engine at take-off conditions against an integrated 360 azimuthal degrees large-eddy simulation with over 2.1 billion cells of all previously listed components. Note that, at take-off conditions the compressor works at transonic conditions and generates an upstream-propagating shock that interacts with the fan modifying the shape of its wake with respect to the stand-alone simulation. Furthermore, the shock is seen as a tone in the pressure spectra at half the impeller blade passing frequency in the forward region of the engine. In the aft region, time-averaged fields are overall similar between stand-alone and integrated simulations but show a deviation in the azimuthal position of the hot-spot at the exit of the combustion chamber due to the addition of the diffuser. Pressure fluctuations generated in the compressor are captured in the combustion chamber as tones in the temperature and pressure spectra at the impeller blade-passing frequency and harmonics as well as an increase in the root-mean-square pressure.
License
CC-BY-NC-ND 4.0